Two Liouville-closed Hardy fields

BY VINCENT BAGAYOKO

March-April 2022

Let $\operatorname{Li}(\mathbb{R})$ denote the Liouville closure of the field of constants \mathbb{R} in say transseries.

Question 1. Is $Li(\mathbb{R})$ closed under composition?

Before answering the question in the positive, let me introduce an equivalent definition of Liouville extensions. Given two Hardy fields $\mathcal{H} \subseteq \mathcal{L}$, the extension \mathcal{L}/\mathcal{H} is a Liouville extension if for all $h \in L$, there are an $n \in \mathbb{N}$ and non-zero germs $f_1, \ldots, f_n \in L$ with $h = f_n$, such that for each $i \in \{1, \ldots, n\}$, one of the following occurs:

- a) f_i is algeraic over $\mathcal{H}(f_1, \ldots, f_{i-1})$,
- b) $f'_i \in \mathcal{H}(f_1, ..., f_{i-1})$, or
- c) $f_i^{\dagger} \in \mathcal{H}(f_1, \ldots, f_{i-1}).$

Given $h \in L$, we define $\operatorname{rk}_{\mathcal{H}}(h)$ to be the least $n \in \mathbb{N}$ such that such a decomposition of length n exists. Note that $\operatorname{rk}_{\mathcal{H}}(h) = 0$ if and only if $h \in \mathcal{H}$. Moreover, if $n = \operatorname{rk}_{K}(h)$ in the situation above, then we have $\operatorname{rk}_{K}(f_{i}) < n$ for all $i \in \{1, \ldots, n-1\}$, which is why I use this presentation of Liouville extensions.

Proposition 1. The Liouville-closure $Li(\mathbb{R})$ of \mathbb{R} is closed under composition.

Proof. Let us prove by induction on $\operatorname{rk}_{\mathbb{R}}(h)$ that for all $h \in \operatorname{Li}(\mathbb{R})$ and $g \in \operatorname{Li}(\mathbb{R})^{>\mathbb{R}}$, we have $h \circ g \in \operatorname{Li}(\mathbb{R})$. This is immediate when $\operatorname{rk}_{\mathbb{R}}(h) = 0$, since then h is a constant. Let $n \in \mathbb{N}^{>0}$ such that the result holds for germs of rank < n and let $h \in \operatorname{Li}(\mathbb{R})$ with $\operatorname{rk}_{\mathbb{R}}(h) = n$.

There are non-zero germs $f_1, \ldots, f_n \in \text{Li}(\mathbb{R})$ with $h = f_n$, and where for all $i \in \{1, \ldots, n\}$, one of the following occurs:

- f_i is algeraic over $\mathbb{R}(f_1, \ldots, f_{i-1})$,
- $f_i' \in \mathbb{R}(f_1, \ldots, f_{i-1}),$
- $f_i^{\dagger} \in \mathbb{R}(f_1, \ldots, f_{i-1}).$

Note that for each $i \in \{1, \ldots, n-1\}$, we have $\operatorname{rk}_{\mathbb{R}}(f_i) < n$ whence $f_i \circ g \in \operatorname{Li}(\mathbb{R})$. We distinguish three cases.

Case 1: *h* is algebraic over $\mathbb{R}(f_1, \ldots, f_{n-1})$. Then $h \circ g$ is algebraic over $\mathbb{R}(f_1 \circ g, \ldots, f_{i-1} \circ g)$, whence algeraic over $\mathrm{Li}(\mathbb{R})$. But $\mathrm{Li}(\mathbb{R})$ is real-closed, so $h \circ g \in \mathrm{Li}(\mathbb{R})$.

Case 2: $h' \in \mathbb{R}(f_1, \ldots, f_{i-1})$. Then

$$(h \circ g)' = g' h' \circ g \in g' \mathbb{R}(f_1 \circ g, \dots, f_{i-1} \circ g) \subseteq \mathrm{Li}(\mathbb{R}).$$

Since $\operatorname{Li}(\mathbb{R})$ is closed under integration, it follows that $h \circ g \in \operatorname{Li}(\mathbb{R})$.

Case 3: $h^{\dagger} \in \mathbb{R}(f_1, \ldots, f_{i-1})$. As in the previous case $(h \circ g)^{\dagger} = g' h^{\dagger} \circ g \in \mathrm{Li}(\mathbb{R})$. We deduce since $\mathrm{Li}(\mathbb{R})$ is closed under exponential integration that $h \circ g \in \mathrm{Li}(\mathbb{R})$.

This concludes the inductive proof.

Remark 2. This can be generalized to an arbitrary Hardy field \mathcal{H} closed under composition (instead of \mathbb{R}), provided that

$$\mathcal{H} \circ \mathrm{Li}(\mathcal{H}) \subseteq \mathrm{Li}(\mathcal{H}),$$

which of course is a problematic inclusion on its own.

Let E denote Boshernitzan's Hardy field, i.e. E is the intersection of all maximal Hardy fields. In one of your lectures, I asked you if it was known whether every positive infinite germ in E has a level in the sense of Rosenlicht/Marker-Miller. I.e. given $f \in E^{>\mathbb{R}}$, is there an $n \in \mathbb{Z}$ with $\log_k f \asymp \log_{k-n}$ for sufficiently large $k \in \mathbb{N}$?

Proposition 3. Each element of $\mathcal{B}^{>\mathbb{R}}$ has a level.

Proof. This can be deduced from a result of Joris in his *Transserial Hardy fields* paper [1]. Consider the field \mathbb{T}_g of grid-based transseries. Let \mathbb{T}_{da} denote the subfield of \mathbb{T}_g of transseries. This is an ω -free, Newtonian, Liouville-closed H-field with small derivation. By [1, Theorem 5.12], there is a Hardy field \mathcal{H} closed under exp and log and an isomorphism

$$(\mathbb{T}_{da}, +, \times, <, \prec, \partial, \log) \longrightarrow (\mathcal{H}, +, \times, <, \prec, \prime, \log).$$

In particular \mathcal{H} is H-closed. Let $f \in E$ and assume for contradiction that $f \notin \mathcal{H}$. Let $M \supseteq \mathcal{H}$ be a maximal Hardy field containing \mathcal{H} . We have $f \in M$ by definition of E. Now $f \in M \setminus \mathcal{H}$ must be *d*-transcendant over \mathcal{H} , hence also over \mathbb{R} . This contradicts Boshernitzan's result that each element of E is in fact d-algebraic. Thus $E \subseteq \mathcal{H}$. In particular, the field E embeds into \mathbb{T}_g as an ordered exponential field, so each $f \in E^{>\mathbb{R}}$ has a level $n \in \mathbb{Z}$.

As far as I know, the only Hardy field with composition which is known not to have levels in this sense is that which is defined in Adele Padgett's forthcoming thesis [2].

Bibliography

- J. van der Hoeven. Transserial Hardy fields. Differential Equations and Singularities. 60 years of J. M. Aroca, 323:453–487, 2009.
- [2] A. Padgett. Sublogarithmic-transexponential series. PhD thesis, Berkeley, 2022.